

ESL-TR-81-44

P - 13 DUAL AGENT APPLICATION

MR. LYLE McDONALD John Hamre, MSGT, USAF

ANSUL COMPANY
MARINETTE, WISCONSIN

AUGUST 1981

FINAL REPORT AUGUST 1979 - AUGUST 1981

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ENGINEERING AND SERVICES LABORATORY AIR FORCE ENGINEERING AND SERVICES CENTER TYNDALL AIR FORCE BASE, FLORIDA 32403

82 03 99 145

DTIC FILE COPY

Best Available Copy

NOTICE

PLEASE DO NOT REQUEST COPIES OF THIS REPORT FROM HQ AFESC/RD (ENGINEERING AND SERVICES LABORATORY).

ADDITONAL COPIES MAY BE PURCHASED FROM:

NATIONAL TECHNICAL INFORMATION SERVICE 5285 PORT ROYAL HOAD SPRINGFIELD, VIRGINIA 22161

FEDERAL GOVERNMENT AGENCIES AND THEIR CONTRACTORS
REGISTERED WITH DEFENSE TECHNICAL INFORMATION CENTER
SHOULD DIRECT REQUESTS FOR COPIES OF THIS REPORT TO:

DEFENSE TECHNICAL INFORMATION CENTER CAMERON STATION ALEXANDRIA, VIRGINIA 22314 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM		
1. REPORT NUMBER 2.	GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER		
ESI,-TP-81-44	D-A112494) 		
4. TITLE (and Subtitio)		5. TYPE OF REPORT & PERIOD COVERED		
P-13 Dual Agent Application		Final Report		
		August 1979-August 1981		
	Ì	6. PERFORMING ORG. REPORT NUMBER		
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(*)		
Mr. Lyle McDonald)			
John Hamre, MSgt, USAF				
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK		
ANSUL Company		AREA & WORK UNIT NUMBERS		
Marinette, Wisconsin		JON: 2505-1002		
		Program Element 64708F		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE Aug 81		
HO AFESC/RDCS	ł	13. NUMBER OF PAGES		
Tyndall AFB FL 32403	ł	44		
14. MONITORING AGENCY NAME & ADDRESS(If different from	om Controlling Office)	15. SECURITY CLASS. (of this report)		
		UNCLASSIFIED		
		15a. DECLASSIFICATION/DOWNGRADING		
		30420002		
Approved for public release; distribution unlimited.				
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)				
18. SUPPLEMENTARY NOTES				
Availability of this report is specified on reverse of front cover.				
19. KEY WORDS (Continue on reverse aids if necessary and id Twin Agent	entify by block number)			
Skid Mounted		1		
Dual Nozzle		ł		
Twin Line				
		i i		
0. ABSTRACT (Continue on reverse side if necessary and ide	ntify by block number)			
The two seperate hose reel assemblies on the AS 32/P-13 were replaced with a single electric rewind reel containing 100 feet of twinned one inch hose. Agent discharge piping was rerouted to opposite sides of the hose reel and the agents are discharged through a dual agent nozzle assembly capable of being operated				
easily by one man. The existing two ball valve type nozzles are replaced with a single dual agent				
nozzle configuration capable of discharging dry chemical and Halon 1211. A				

standard electric rewind twinned hose reel was installed with attention to wiring

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

CURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

D. ABSTRACT (CONTINUED)

harness routes, power requirements and operation. The electrical requirements are within the present capability of the vehicle, and harness routing follows current vehicle specifications to prevent chaffing, weathering and other damage. The operating controls have been located to allow one man to energize the rewind mechanism and also guide the hose onto the reel.

The actuation systems of both units are combined to facilitate a one-person operation (movement of one lever opens all valves). This actuation lever is located at the rear of the vehicle in the vicinity of the dual agent nozzle. A provision was incorporated into the system to clear agents from the hose after use.

The dispensing system satisfies the flight and taxiing load requirements of MIL-A-8421.

The modified components of the vehicle can be discharged independently and simultaneously from their respective nozzles to insure satisfactory operation and conformance to the flow requirements.

INCLASSIFICATION OF THIS PAGE(When Data Entered)

The state of the s

PREFACE

This final report was prepared by the Ansul Company, Marinette Wisconsin, under Contract F08635-80-C-0232 with the Air Force Engineering and Services Center, Tyndall Air Force Base, Florida. Job Order Number 2505-1002.

This report has been reviewed by the Public Affairs (PA) office and is releaseable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

JOSEPH L. WALKER Project Officer

COHN E. GOIN, LtCol, USAF Chief, Engineering Research Division

FRANCIS B. CROWLEY, III Col, USAF Director Engineering and Services Laboratory

:	λοσος	ion Fo	r /		
;	MII		Ā		
•	DTIC I		Н		
		Picatlo	n		
By					
	Availability Codes				
DTIC	Avail en:/or				
	Dist	Spec	- J.K		
CCP4	A				
	71				

i
(The reverse of this page is blank)

TABLE OF CONTENTS

Section	<u>Title</u>	Page
I	INTRODUCTION 1. Objective 2. Background 3. Approach	1 1 1
II	DISCUSSION 1. Modification 2. Testing 3. Evaluation	2 2 4
III	CONCLUSIONS APPENDICES	5
	A Air Transportability Equations B Parts Index	6 31

LIST OF FIGURES

<u>Figure</u>	<u>Title</u>	Page
1	Calculation Set A-Fore and Aft	8
2	Shear Load on Bolts	9
3	Legs to Mount Hose Reel Assembly	12
4	Calculation Set B-Lateral (Left or Right)	13
5	Calculation Set D Down	17
6	Bolt Attachments Between Reel and Base	18
7	Bolt Attachments Between Base and Skid	19
8	Bolt Attachments Between Reel and Base	24
9	Bolt Attachments Between Base and Skid	26
10	Bolt Attachments Between Reel and Base	28
11	Bolt Attachments Between Base and Skid	29

SECTION I

INTRODUCTION

1. OBJECTIVE

The objective of this effort was to develop a dual fire suppression agent dispensing system for the AS 32/P-13 airfield ramp firefighting vehicle. That could dispense both dry chemical agent (PKP) and liquid vaporizing agent (Halon 1211) either singly or simultaneously from one nozzle. This dispensing system was also to satisfy the flight and taxiing load requirements of MIL-A-8421 and to be capable of being operated by one fire fighter.

BACKGROUND

The AS 32/P-13 vehicle was designed as a fast response vehicle for use as a standby and airfield ramp patrol vehicle to relieve some of the required duties of the primary aircraft crash rescue vehicles. The two auxiliary agents carried on the vehicle, Halon 1211 and dry chemical (PKP) have been shown to give the vehicle an advantage in fighting aircraft fires.

Halon 1211 (Bromochlorodifluormethane) is a "clean" agent capable of being used as a wet fire suppression agent without damage to aircraft components from chemical reactions and corrosion. PKP (potassium bicarbonate) is considered an excellent flame "knockdown" agent for class B fuel fires. This agent is utilized for all types of aircraft and ground fires not requiring a "clean" agent.

The AS 32/P-13 was designed to be operated by a two-person fire fighting crew. Increased costs and limited manpower make it an economically feasible alternative to change the present configuration to that of a twin-line, dual nozzel type dispensing unit which retains its proficiency, while being operated by one fire fighter.

3. APPROACH

The actuation system of the presently separate dispensing units were combined so that movement of one lever would open all valves and enable one person to operate a dual agent nozzle. The two separate hose assemblies were replaced by a single hose with a dual agent nozzle. A provision to clear agents from the hoses after use was also incorporated.

Modified components capable of being discharged independently and simultaneously from their respective nozzles were tested and evaluated to ensure satisfactory operation and conformance to flow requirements.

SECTION II

DISCUSSION

1. MODIFICATIONS

The AS 32/P-13 fire fighting vehicle previously designed for operation by two fire fighters has been converted to a one-person operation. The modified system can be either actuated manually as a separate unit or pneumatically for a dual system. The two separate hose assemblies were replaced with a single electric rewind reel containing 100 feet of twin agent hose with a single dual agent nozzle. The parts needed for this modification are listed in Appendix B.

The wiring harness routes from the electric rewind reel to the source of power are enclosed in a weather tight flexible conduit to prevent any weathering or chaffing to the wiring harness and can be disconnected at a weather tight box located on skid the unit.

The skid mounted system can be removed from the truck bed by disconnecting electrical wiring at the weather tight box and removing six bolts that fasten the skid to the truck bed. The skid unit is balanced so it can be lifted at the dry chemical tank eye hooks.

2. TESTING

Flow testing was done with 100 feet of twin agent 1-inch hose and dual agent nozzle assembly. The flow requirements for Halon 1211 were 5.0 to 5.5 pounds per second and an effective range of 40 feet. Discharge of the Halon unit was recorded on the Dynagraph. At 2/3 of 95 percent discharge time, the flow rate was 5.4 pounds per second. Prints of the nozzle assembly are attached. Flow rate on Purple-K agent was also recorded on the Dynagraph and the flow requirements were 6.5 to 8.0 lbs per second, using a converging/diverging nozzle. At the 2/3 of 95 percent discharge time, the flow rate of 7.5 pounds per second was recorded.

A problem that arose during the test program was sand in the Halon tank from previous sandblasting. During filling and discharge, sand would accumulate into the tank check valve, tank hose clean out valve, and tank outlet valve. All mentioned valves had to be replaced with new valves. The Halon tank was removed so the sand could be vacuumed out and piping to the valves was also cleaned. The sandblasting sand removal, eliminated the problem of scoring valve seats for leakage problems.

The tank hose clean-out valve and tank outlet valve were tested (N_2 at 200 psi and leak checked with soap solution) prior to

installation, with no visible leaks. Ball valves were installed on the unit in a closed position and the Halon tank was pressurized to 200 psi and let stand overnight. There was some pressure in the line to the nozzle.

Valves were then pressurized to 950 psi to square up the seat for more positive seal between the ball and the seat and then tested with a soap solution. There were no visible leaks. Valves were again pressurized to 200 psi and let stand with a soap solution. Again, there were no visible leaks. Valves were installed as per print 55660 with the threaded spacers as the inlet parts of the valve. The halon tank was pressurized with $^{\rm N2}$ to 250 psi and left to stand with the hose clean out valve closed (normally closed) and tank outlet valve closed (normally closed). Again, there was some pressure to the nozzle. The Halon tank was then charged with 50 pounds of Halon 1211 to leak test valves with vapor pressure. All during the testing, the hose line was never purged with air so there probably was an accumulation of vapors in the nozzle.

Two new valves were sent from the Marpac Company with new seating material KEL-F and RTFE. The new material has a lower coefficient of expansion than the standard TFE material. Three Marpac valves with the three seating materials were installed on 2-1/2 pound shells charged with approximately 1 pound of Halon 1211 and pressurized to 240 psi. Units were leak tested at Systems Halon filling station with the Halogen leak detector. Results are:

- a. Standard valve P/N 54286 TFE seats leak rate .05 oz/yr no leakage.
 - b. RTFE seats leak rate .05 oz/yr no leakage.
 - c. KEL-F seats leak rate 0.05 oz/yr no leakage.

The Halon was dumped from the shells, recharged with 1211 and left unpressurized to simulate the P-13 unit. This method determined the amount of vapor lost per year.

- a. Results are TFE seats .25 oz/yr no leak.
- RTFE seats .05 oz/yr moderate.
- c. KEL-F seats .05/oz yr moderate.

Standard valve with TFE seats pressurized to 950 psi to square up the seat as per unit 36238 and then installed on 2-1/2 shell with 1211 and unpressurized, leak rate .05 oz/yr.

Aqueous film forming foam (AFFF) nozzle assembly P/N 54742 was converted for Halon 1211 had to have compression spring P/N

25786 changed to a heavier compression due to back pressure in the nozzle. The nozzle would not shut off. Standard compression spring P/N 25786 specifications are free length 1.350 inches to 1380 inches, active coils 6, wire diameter .080 inches, compression 26.6 pounds at 1.0 inches. Replacement spring free length 1.300 inches, active coils 6, wire diameter .092 inches, compression 70 pounds at 7/16 inches.

3. EVALUATION

- a. The nozzle with a new spring was tested on a 350 wheeled unit charged with water and cycled to determine shut off performance. The spring is capable of shutting off the nozzle with water or Halon.
- b. The nozzle has been tested for both shutoff and sealing capabilities and has performed satisfactorily.
- c. Manual and pneumatic actuation of the dual system is operationally satisfactory.
- d. The operational discharge range of the dual agent ${\tt nozzle}$ is satisfactory.

SECTION III

CONCLUSIONS

The modification of the AS 32/P-13 fire fighting vehicle from a two-person configuration to one that could be operated by one person with no loss of proficiency was successful; see Appendix A. The unit was converted to a single electric rewind reel containing 100 feet of twin agent hose with a dual nozzle and an actuation system that can be operated manually or pneumatically.

Flow testing and effective range testing met the USAF requirements for Halon 1211 and PKP Dry Chemical agents.

The modified dispensing system satisfied the flight and taxiing load requirements of MIL-A-8421. All hose reel/hose reel base attachments to the mounting base were acceptable according to the procedures defined.

APPENDIX A

AIR TRANSPORTABILITY EQUATIONS

Now. Air transportability Equations are identical to those for previous P-13 truck design, with the exception of the home cold calculations. These calculations have been redone and are presented here.

HOSE REEL ASSEMBLY - SUB SECTION A

1. Calculation Set A - Fore and Aft (Figure 1)

These calculations will consider a force (F) equal to 3 g applied perpendicular and horizontal to the hose reel axis. Force can be fore or aft since stress loads (F_S) will be equal in either direction.

Weight of hose reel and components = 324#

The bearings are designed to withstand a radial load of 2,940 pounds. Therefore, the bearings are acceptable in the fore and aft direction since a force (T_t) of 480 pounds is applied to both bearings. Note that each bearing will share the total load equally.

All friction forces will be ignored as will the weight of the reel since this will provide for maximum stress loads.

a. Shear Load on Bolts (Figure 2)

$$\mathbf{F}\mathbf{y} = \mathbf{0}$$

$$F_{SL}$$
 = Shear on left bolt

$$F_{S_{I}} + F_{S_{R}} - 3 (162) = 0$$

$$F_{SR}$$
 = Shear on right bolt

$$2 F_S = 3 (162)$$

$$F_{SL} = F_{SR} = F_{S}$$

FS = 243 pounds

$$\sigma = \frac{243}{A}$$

$$\sigma = \frac{243}{A} = \frac{4(243)}{.2983}$$

σ = Shear stress A = Area

 $\sigma = 3477 \text{ psi}$

Shear stress is well below the yield shear stress of approximately 15,000 psi.

Set A-Fore and Aft Figure-1 Calculation

b. Therefore, the tensile strength will now be examined (see Figure 2).

 $M_{Left} = 0$

-(1) (3) (162) + 5 (F_{T_R}) = 0 F_{T_R} = Tension load in right

 $F_{T_R} = 98$ pounds

$$\sigma = FT_R$$

 A_{S}

o = Tensile stress

$$\sigma = 1402 \text{ psi}$$

As = Stress area

The tensile stress is well below the 30.000 yield strength. Therefore, the bolts are satisfactory and acceptable.

c. The final area of concern in this calculation set is the legs on which the hose reel assembly are mounted (see Figure 1). These legs are constructed with 11 gauge (.120) carbon steel (1030). There is a shear force and a tensile force in this material (see Figure 3). Each leg is 20 - 3/4" long in the lateral direction.

$$F_X = 0$$

$$F_{S_L} + F_{S_R} - 3 (324) = 0$$

$$F_{S_R} = F_{S_R}$$

$$2 F_{S_R} = 3 (324)$$

Where \textbf{F}_{SL} and \textbf{F}_{SR} are snear

forces on each leg.

$$F_{SR} = 486$$
 pounds

$$F_{SL} = 486$$
 pounds

Therefore:

$$\sigma = \frac{F}{A}$$

 σ = Shear stress F = Shear force

$$\sigma = \frac{486}{(20.75)(.120)}$$

A = area

$$M_{Left} = 0$$

22.25
$$(F_{T_R})$$
 - 11-3/16 (3) (.324) 324 (11-1/8) = 0

$$22.25 (F_{T_R}) - 10874.25 + 3604.5 = 0$$

$$F_{T_R} = \frac{3590}{22.25} \frac{7269.75}{22.25}$$

$$F_{T_R} = 326.8 \text{ pounds}$$

$$Fy = 0$$

$$F_{T_1} - 324 - F_{T_R} = 0$$

$$F_{T_1} = 324 + 326.8 = 650.8$$
 pounds

Therefore:

$$\sigma = F$$

$$\sigma = \frac{650.8}{(.120)(20.75)}$$

 $\sigma = 261.4 \text{ psi}$

σ = Tensile stress F = Tensile load

A = area

Therefore, the shear and tensile stresses are well below yield point in shear (15,000 psi) and in tensile (30,000 psi) and are, therefore, acceptable. For the bolts which secure the legs, the force of 650.8 pounds (tensile in the leg) acts on four bolts (stress area 0.0773 per bolt) for a bolt shear stress as follows:

$$\sigma = \frac{650.8}{4.(0.0773)}$$

 $\sigma = 2104.8 \text{ psi}$

Again, well below the yield point of 15,000 psi shear for the steel in question.

2. Calculation Set B - Lateral (Left or Right) (Figure 4)

These calculations will consider a load (F) equal to 3 g applied parallel and horizontal to the hose reel axis. Force considered can be left or right as each direction will produce equal stress loads (FSL, FSR).

Figure-3 Legs To Mount Hose Reel Assembly

Figure-4 Calculation Set B-Lateral (Left or Right)

The bearings are designed to withstand an axial thrust of 588 pounds each. The <u>total</u> load on these bearings is equal to 3(324)/2 or 486 pounds per bearing. Thus, the bearings can withstand the axial loading in the lateral direction.

The shear force in the lateral on the bearing bolts would be equal to the numerical value determined in Sub Section A.1.C. Therefore the bolts are satisfactory.

The remaining consideration in the lateral direction on the reel hose is the legs and the legs bolts (see Figure 4).

a. Shear Force on Leg

 $F_X = 0$

F_S = Shear load on leg, but there are two legs

 $3(324) = 2 F_{S}$

σ= Shear stress

 $F_S = 486 \text{ pounds}$ = F_S/A A = Shear area

b. Shear stress in the bolts will be:

 $\sigma = \frac{F}{A_S}$

 σ = Shear stress F = Load = $F_{SR/2}$ since two

 $\sigma = \frac{486/2}{0.0773}$

Bolts share the load

A_S = Stress area

 $\sigma = 3143.6 \text{ psi}$

Therefore, the stress loads (tensile and shear) on the 3/8 - 16 bolts is well below the yield strength for stainless steel material. Thus, these bolts are acceptable.

c. Bolt attachments between base and skid (Figure 7)

3/8 - 16 bolts are utilized

 $M_A = 0$

12 1/2 (324) - 26.2 (3) (324) + 33 (F_B) - 7.5 (3) 243/4 = 0

 $F_B = 26.2 (3) (324) - 12 \frac{1}{2} (324) + 7.5 (3) \frac{24-3}{4}$

 $F_B = 690 \text{ pounds}$

Fy = 0

 $F_A - F_B - 324 = 0$

$$F_A = 690 + 324$$

$$F_A = 1014 lbs$$

$$F_{\mathbf{x}} = 0$$

$$-3 (243) - 3 (324) + F_S = 0$$

$F_S = 1154 \text{ pounds}$

(1) The force F_B is a tensile load on the bolts while the force F_A is a compressive force on the skid. Force F_B (690 pounds) is shared by four bolts. The tensile stress is:

$$\sigma = \frac{486}{0.120 (30.75)}$$

$$\sigma = 132 \text{ psi}$$

d. Shear Load on Bolts

$$M_A = 0$$

$$(30.75)$$
 (F_{T_R}) + (15.375) (324) = 11.1875 (3) (324)

$$F_{T_R} = \frac{10874.25 - 4981.5}{30.75}$$

$$F_{T_R} = A_S$$

$$\frac{191.7 \text{ lbs}}{}$$

$$Fy = 0$$

$$F_{T_L} + F_{T_R} + 324 = 0$$

$$F_{T_L} = -F_{T_R} - 324 = 191.7 - 324$$

$$F_{T_L} = A_S$$

$$\frac{515.7}{}$$

Therefore, the maximum load is on the bolts on the left end. There are two bolts per leg at each end and there are two legs. Therefore, the load is carried by four bolts. Thus:

$$\sigma = \frac{F_{TL}}{4\Lambda_{S}}$$

$$A_S$$
 = Stress area = .0773

$$\sigma = \frac{515.7}{4.(0.0773)}$$

$$\sigma = 1667.85 \text{ psi}$$

Again, far below the yield strength of 15,000 psi on 1030 steel.

3. Calculation Set C - Up

This calculation set will consider a force equal to 2 g acting perpendicular to the reel axis in the up direction. The load is equal to 2 (324) or 648 pounds. The bearings can each withstand 2,940 pounds of radial thrust. Thus, the bearings are acceptable for this loading condition.

a. Each bearing is secured by two bolts (3/8 - 16) or four bolts restrain the 324 pound load. Thus:

$$\sigma = \frac{324}{4\Lambda_S}$$

As = Stress area

$$\sigma = \frac{320}{4(0.0773)}$$

 σ = Tensile area

$$\sigma = 1035 \text{ psi}$$

Again, the stress is well below the yield point of 30,000 psi. Final consideration would be the bolts which secure the legs. However, these bolts are 3/8-16 as above, with eight bolts restraining the 324 pound load instead of four bolts as in the bearings. Therefore, these bolts are acceptable.

4. Calculation Set D - Down (Figure 5)

This calculation set will consider a force equal to $4\ 1/2$ acting perpendicular to the reel axis in the down direction. The force is equal to 4.5 (324) or 1458 pounds. The bearings can withstand a force of 2940 pounds in the radial direction.

The legs are the only other support members to be considered in this calculation.

Thus:

$$\sigma = \frac{F}{8A_S}$$

 $\sigma = Shear stress$

$$\sigma = \frac{1458}{8 \ (0.0773)}$$

 $A_{S} = 0.0773$

F = 1458

 $\sigma = 2357.8 \text{ psi}$

Again, this shear stress is well below the shear yield strength of 15,000 psi.

Figure-5 Calculation Set D-Down

Figure-6 Bolt Attachment Between Reel and Base

Skid Figure-7 Bolt Attachment Between Base and

Finally, the load is also supported by the leg. Therefore:

$$\sigma = \frac{F + W}{2 \text{ (A)}}$$

$$F = \text{Force (1458)}$$

$$W = \text{Weight 324}$$

$$A = \text{Area}$$

two legs

$$\sigma = \frac{1458 + 324}{2(20.75)(0.120)} \frac{1782}{4.98}$$

 $\sigma = 357.85 \text{ psi}$

Therefore, the leg design is acceptable.

HOSE REEL ASSEMBLY ATTACHMENT MOUNTING BOLTS - Sub Section B

1. Calculation Set A - Fore and Aft Direction

A force equal to 3 g will be applied to the hose reel assembly perpendicular to the reel axis of rotation in the horizontal direction fore or aft. Calculation will be done in the fore direction with numerically equal results in the aft. There are two sets of mounting bolts to consider --- one set attaches the reel assembly to the hose reel base (see drawing 36225 and Figure 6) and the other attaches the hose reel base to the skid (see Figure 7).

The base will carry the load of two hose reels. We will assume the hose reels are free standing and will ignore the added strength of the rapid piping.

2. Bolt Attachments Between Reel & Base (Figure 6)

3/8 - 16 bolts are utilized

$$M_{Left} = 0$$

$$25 (F_{T_R}) - 11-3/16 (3) (324) + 324 (12 1/2) = 0$$

$$F_{T_R} = \frac{10875 - 4050}{25}$$

$$F_{T_R} = 273 \text{ lbs}$$

$$Fy = 0$$

 $F_{T_L} - 324 - F_{T_R} = 0$
 $F_{T_L} = 324 + 273$
 $F_{T_L} = 597 \text{ lbs}$

$$Fx = 0$$

$$F_{S_L} + F_{S_R} - 3 (324) = 0$$

$$2F_{S_R} = 3 (324)$$

$$F_{SL} = F_{SR}$$

Where $F_{S_{1}}$ and $F_{S_{1}}$ are

shear forces on cartabolt.

$$F_{SR} = F_{SL} = 486$$
 pounds

a. The load F_{TR} is a tensile load on the bolts while F_{TR} is a compressive load on the base stand. The load F_{TR} (273 pounds) is should by two bolts. Thus:

$$\stackrel{(v)}{=} := \frac{F}{A_{ss}} =$$

$$\sigma = \frac{273/2}{.0773}$$

 $\begin{array}{lll} & s & s & Bolf & fonctions for stress. \\ F & = & Bolf & fond & \log_{P_{1}(S)} & & & \\ \end{array}$

$$A_S = Stress area = 0.077$$

$$\sigma = 1765.9$$
 psi

The shear stress on the bolts is:

$$c = \frac{F_S}{S_{A_S}}$$

 $\sigma =$ Shear stress $F_S =$ Shear Torce

8 bolts share load

$$\sigma = \frac{1154}{8 (.0773)}$$

Therefore, the stress loads (tensile and shear) on the 3/8-16 bolts is well below the yield strength for stainless and steel material. Thus, these bolts are acceptable.

b. Shear and Bending of Hose Reel Base

Ignoring the added strength of the rigid piping, we will examine the vertical members of the hose reel base assembly for shear and bending.

We will assume the shear force on the members is identical to the bolt shear force of 577 pounds. Two angles will absorb each force. Therefore:

21

$$\sigma = F = \frac{SL}{A}$$

$$\sigma = \frac{577}{2(.94)}$$

$$\sigma = 307 \text{ psi}$$

c. For bending stress we will assume each angle to be a cantilever beam supporting the weight of the hose reels and the base assembly. Four (4) beams will support the total weight.

$$M = 0 M - 15 (3) (324) - 7.5 (3) 243/4 = 0$$

 $M = 15946 in pounds$

d. Shear stress in the bolts will be:

 $\sigma = 3143.6 \text{ psi}$

Therefore, the stress loads (tensile and shear) on the 3/8-16 bolts is well below the yield strength for stainless steel material. Thus, these bolts are acceptable.

e. Bolt attachments between base and skid (Figure 7)

 $F_B = 690 \text{ pounds}$

$$Fy = 0$$
 $F_A - F_B - 324 = 0$
 $F_A = 690 + 324$
 $F_A = 1014 \text{ lbs}$
 $F_X = 0$
 $-3 \frac{243}{4} - 3 (324) + F_S = 0$
 $F_S = 1154 \text{ pounds}$

(1) The force F_B is a tenile load on the bolts while the force F_A is a compressive force on the skid. Force F_B (690 pounds) is shared by four bolts. The tensile stress is:

$$\sigma = F/A_S \qquad \qquad \sigma = Bolt tensile stress$$

$$\sigma = \frac{690}{.0773/4} \qquad \qquad F = Bolt load = F_B/2$$

$$A_S = Stress area = B0.0126$$

$$\sigma = \frac{2231.5 \text{ psi}}{4 (.25)}$$

$$S_B = \frac{15975}{4 (.25)} = \frac{15946 \text{ psi}}{4 (.25)}$$

This is the highest stress produced through out the assembly and still well within the properties of the steel.

3. Calculation Set B - Lateral Direction: Left and Right

These calculations will consider a load equal to 3g applied parallel to the axis of rotation of the hose reel --- force can be applied either left of right directions without changing the maximum numerical stress. There are two sets of mounting bolts to consider --- one set attaches the reel assembly to the hose reel base (see drawing 36225 and Figure 8) and the other attaches the hose reel base to the skid (see Figure 9).

4. Bolt Attachments Between Reel and Base (Figure 8)

$$3/8 - 16$$
 bolts are utilized

 $M_A = 0$
 $14.5 (324) - 29 (F_B + 14 (3) (324) = 0$
 $F_B = (14) (3) (324) + 14.5 (324)$
 $F_B = 631.3$ pounds

 $F_Y = 0$
 $F_A + W - F_B = 0$
 $F_A = 631.3 - 324$
 $F_A = 307.3$ pounds

 $F_{X} = 0$
 $F_{X} = 30$
 $F_{X} = 0$
 $F_{X} = 30$
 $F_{X} = 0$
 $F_{X} = 30$
 $F_{X} = 0$

Figure-8 Bolt Attachment Between Reel and Base

a. The force F_A is a tension force applied to the bolts while F_B is a compressive force on the base. Therefore, the tensile stress on the bolts is:

$$\sigma = \frac{F}{A_S}$$

 σ = Bolt tensile stress

$$\sigma = \frac{307.3/2}{0.0773}$$

 $F = F_A/2$ (force on each bolt) $A_S = Stress$ area

$$\sigma = 1988 \text{ psi}$$

b. Shear stress is:

$$\sigma = \frac{F1}{A_S}$$

 $\sigma = \text{Shear stress}$ $F1 = F_S/4 \text{ (4 bolts are sharing shear load which is } F_S)$

$$\sigma = \frac{972/4}{0.0773}$$

As = Stress area

$$\sigma = 3143.6 \text{ psi}$$

Therefore, both the shear stress and the tensile stress on the 3/8 - 16 bolts are well below the yield strength of stainless steel.

5. Bolt Attachments Between Base and Skid (see Figure 9)

$$3/8$$
 - 16 bolts are utilized

$$M_C = 0$$

$$29 (324) + 14.5 (324) + 26.2 (3) (324) + 7.5 (3) 24-3/4 = 0$$

$$F_D = \frac{29 (324) + 14.5 (324) + 26.2 (3) (324) + 7.5 (3) 24-3/4}{29}$$

$$F_D = 1411 \text{ pounds}$$

$$Fy = 0$$

$$F_c + 220 - F_c = 0$$

$$F_C = 1411 - (324 + 243/4)$$

$$F_{\rm C}$$
 - 1026 pounds

$$F_{\mathbf{x}} = 0$$

$$F_{81} + 3 (324) + 3 (243/4) = 0$$

$$F_{S_1} = 1154$$
 pounds

Figure-9 Bolt Attachment Between Base and Skid

The force \mathbf{F}_{D} is a compression force on the skid and the force F_c is a tensile force on the 3/8 - 16 bolts. Therefore, the maximum tensile stress on the bolts assuming only two will hold the entire unit is:

 $\sigma = F/A_S$

 σ = Bolt tensile stress

$$\sigma = 1026/2$$

 $F = F_c/2$ (force on each bolt)

$$A_S$$
 = Stress area

 $\sigma = 6636.5 \text{ psi}$

.0773

Shear stress is:

$$\sigma = F_1/A_S$$

$$F1 = FS1$$

 σ = Shear stress F1 = $F_{S1/8}$ - 8 bolts are sharing shear load which is F_{S1}

$$^{\circ} = \frac{1154/8}{.0773}$$

 $^{\circ}$ = 1866 psi

Therefore, both the shear stress and the tensile stress on the 3/8 - 16 bolts are well below the yield strength of stainless steel. The shear and bending loads on the vertical base members will be identified to the fore and aft calculations, Section II, Calculations Set A.

Calculation Set C - Up Direction

These calculations will consider a load equal to 2 g applied perpendicular to the axis of rotation of the hose reel in the up direction. There are two sets of mounting bolts to consider --one set attaches the reel assembly to the hose reel base (see drawing 36225 and Figure 10) and the other attaches the hose reel base to the skid (see Figure 11).

Bolt Attachments Between Reel and Base (Figure 10)

3/8 - 16 bolts are utilized.

Since the force is applied at a center of gravity which is equal distance from the four bolts, the bolts will share the load equally. Therefore:

$$Fy = 0$$

FBolt - Load on four bolts

$$F_{Bolt} + 324 - 2(324) = 0$$

 $F_{Bolt} = 324 \text{ pounds}$

$$\sigma = \frac{324}{4\Lambda_S}$$

$$A_S = 0.0773$$

4 bolts

$$\sigma = 1048 \text{ psi}$$

Figure-10 Bolt Attachment Between Reel and Base

Figure-11 Bolt Attachment Between Base and Skid

b. Bolt Attachments Between Base Skid (Figure 11)

3/8 - 16 holts are utilized.

Since force is applied at a center of gravity which is equal distance from the eight bolts, the bolts will share the load equally. Therefore:

Fy = 0
$$F_{Bolt} = 385 - 2 (385) = 0$$

$$F_{Bolt} = 385$$

$$\sigma = \frac{385}{8A_S}$$
As bolts

 $\sigma = 622 \text{ psi}$

Therefore, the tensile stress on the 3/8 - 16 bolts is well below the yield strength of stainless steel.

7. Calculation Set D - Down Direction

A force equal to 4 1/2g will be applied to the unit in a down direction perpendicular to the agent tank base plate. This force direction does not exert any forces on the bolt attachments, and therefore, is not a factor in the calculations required by MIL-T-83303A.

APPENDIX B

PARTS INDEX

Parts needed for modification of the AS 32/P-13

55589 350 PKP dry chemical 500-Halon 1211 skid ass'y - modified one man operation (USAF P-13 skid ass'y).

```
1/8" x 1"
                   flat steel (3)
2372
       Skid frame
36237
                     3'8 \times 1-1/4 bolt s.s.
         19124
                      6" x 10.5 lb/ft channel (82" lg) (2)
         16580
                      4" x 5.4 lb/ft channel (44" lg) (6)
         17469
                      "X" frame
         16365
                      2" x 2" x 1/4" angle (44" lg)
         2987
                      2" x 2" x 1/4" angle (18" lg)
         2987
                      1/4" x 2" flat steel (6" lg) (2)
         8988
                      1/4" x 2" flat steel (12-1/2" lg)
         8988
                      1/4" x 2" flat steel (6-1/2" lg)
         8988
                      1/2" x 2" flat steel (17-1/4" lg)
          23845
                      1/2" x 2" flat steel (15" lg)
          23845
                      Paint specifications
         36228
36234
       Dry chemical tank and piping
          29924 Vendor's tank
                      19404 Collar (Ansul supplied)
                      29922 Gas tube assembly (Ansul supplied)
                            2431 1/2" wrought steel pipe (5" lg)
                            29921 Gas Tube
                                   29920 Pipe (Drilled)
                                         2462 1/2" wrought steel
                                           pipe (15" lg)
                                    3288 Clamp
                                   25508 Disc
                                    3287 Valve rubber
                             10935 1/2" Malleable tee
                             2462 1/2" Wrought steel pipe
                                      (12-1/2" lg)
                      Indicator fill cap
          26312
                      1" x 5" Lg nipple (2)
          16090
                      1/2" tee (2)
          19962
                      1/2" x 4" lg nipple (2)
          16088
                      1/2" close nipple
          16198
                      1/2" ball valve (2)
          26001
          26013
                      Safety valve
                      Ring pin bracket assembly
          23850
                      1133 1/4" Lockwasher
                      18107 1/4" - 20 Hex nut
1132 1/4" - 20 x 3/4" Lg rd head machine screw
                      2985 1/2" sq. steel (1-1/2" lg)
                      2986 1/8" x 1/2" flat sheet (6-1/2" lg)
                      36228 Paint specifications
                      1/2" x 90° street elbow (2)
1/2" x 1-1/2" lg. nipple (2)
          19838
          19836
          19872
                      1" tee
                      1" x 90° union elbow
          31782
                      1" ball valve
          26002
                      1/4" ball valve
          26000
```

```
19190
                     1/4" close nipple
         19994
                     Bracket nameplate
         19992
                     Bracket nameplate
         19993
                     Bracket nameplate
                     Ring pin (4)
         598
         2367
                     Safety chain (4)
         25540
                     Pop rivet (6)
                     1/2" x 1/4" reducing bushing (2)
         25464
         36228
                     Paint specifications
         16196
                     1/2" union elbow
                     1" x 1/2" reducing bushing
         19873
                     1/2" pipe (23" lg)
         19958
                     Lead and wire seal (4)
         197
       Halon 1211 tank and piping
55660
         36229
                     Vendor's tank
         54286
                     3/4" Ball valve
                     Fill gage
         30263
                     1/2" ball valve (2)
         26001
                     1/4" ball valve
         26000
                     1/2" close nipple (3)
         16198
                     1/2" x 1-1/2" nipple (2)
         19836
                     1/2" x 1/4" reducing bushing
         25464
                     1/2" cross
         28124
                     Pressure relief valve
         26013
                     3/4" x 90° elbow (3) 3/4" pipe (5" lg)
         19833
         19853
                     3/4" pipe (8-1/4" lg)
         19853
                     3/4" close nipple
         19116
                     3/4" pipe (13-3/8" lg)
         19853
                     3/4" pipe (6" lg)
         19853
                     3/4" x 3/4" x 1/2" reducing tee
         19846
                     1/2" union elbow
         16196
         19993
                     Bracket nameplate
         19994
                     Bracket nameplate
         19992
                     Bracket nameplate
         598
                     Ring pin (3)
                     Safety chain (3)
         2367
         25540
                     Pop rivet (6)
                     1/2" x 90° street elbow (2)
         19838
                     1/2" pipe (17-1/4" lg)
         19958
                     1/2" charging coupling
         26031
                     Dust cap
         26148
                     1/2" check valve
         19772
                     1/2" tee
         19962
                     Union elbow
         16195
                     1/4" close nipple
         19190
         36228
                     Paint specifications
                     Lead and wire seal (3)
         197
                     3/4" pipe (2-1/2" lg)
         19853
                     2'' pipe plug (2)
         1738
       Hose reel base assembly
55588
         36037
                     Hose reel base
```

```
2987 \ 2 \ x \ 2 \ x \ 1/4 \ angle \ (12-3/4 \ lg) \ (4)
                      2987 2 x 2 x 1/4 angle (45-1/2 lg) (2)
                      2987 \ 2 \ x \ 2 \ x \ 1/4 \ angle (18-1/4 \ lg) (2)
                      8988 2 x 1/4 flat stock (22-1/4 lg) (2)
                      8988 2 x 1/4 flat stock (46 lg) (2)
8988 2 x 1/4 flat stock (12-3/4 lg) (2)
                      2985 1/2" square stock (3/4 lg) (2)
                      2987 Angle
                      36228 Paint specifications
55674
       Hose reel ass'y
          55595
                      Electric hose reel
                      19273 Hose reel
                      12532 Swivel adaptor union
                      16159 Swivel adaptor union
                      19861 \ 1-1/2 \ x \ 1 \ reducing bushing (2)
                      36228 Paint specifications
          55659
                      Roller base assembly
                      55658 Roller base
                             2396 3/8 x 3 flat
                      55655 channel
                             8940 2 x 1 x 1/8 hot rolled mild steel
                               channel
                      55656 channel
                             8940 \ 2 \ x \ 1 \ x \ 1/8 \ hot rolled mild steel
                               channel
                      36228 Paint specifications
          17586
                      Hose roller assembly
          55624
                      Hose confiner
                      19939 1/2 aluminum rod
                      36228 Paint specifications
                      1/2" lockwasher ss (4)
          16121
                      1/2" hex nut ss (6)
          16119
          19124
                      3/8 \times 1-1/4 \text{ bolt } (4)
         14928
                      3/8 hex nut ss (6)
         14929
                      3/8 lockwasher ss (6)
         16618
                      3/8 flat washer (6)
                      Hose clamp (4)
         19686
                      2538
                            1/8 \times 1-1/4 flat steel
                      1/4 \times 3/4 \text{ screw } (8)
         1132
         1133
                      1/4 lockwasher (8)
                      1/4 hex nut (8)
         18107
         55709
                      Halon 1211 hose assembly
                      31213 1" I.D. x 50' hose
                      55708 1" hose coupling
         55859
                      D.C. hose assembly
                      11384 hose
                      2131 male coupling
                      55708 Hose coupling
         19428
                      Clip - crank handle (3)
         3855
                      #10 Screw (3)
         14235
                      #10 Lockwasher (3)
         14732
                      #10 Hex Nut (3)
```

```
36231
       100 cu. ft. nitrogen cylinder
                     Lead and wire seal (2)
         197
                     Valve locking assembly
         17262
         1625
                     Tag wire
         15389
                     Tag
         1423
                     D.O.T. caution tag
         11391
                     Label
         25128
                     Label
                     Label
         3477
                     Chain (20 links)
         2367
         52698
                     Charged nitrogen cylinder
         19897
                     Cable tie
                     Paint specifications
         36228
36230
       300 cu. ft. nitrogen cyclinder
         36043
                     Charged nitrogen cylinder
                     25125 Quick Opening valve
                     11453 Shipping Plug
                     11392 N2 cylinder cap
                     28281 Nitrogen Cylinder
         197
                     Lead and wire seal (2)
         17262
                     Valve locking assembly
         11391
                     Label
         2367
                     Chain (20 links)
         15389
                     Tag
         19897
                     Cable Tie
         1625
                     Tag wire
                     D.O.T. caution tag
         1423
         25128
                     Label
         12011
                     Label
         36228
                     Paint specifications
25462
       Nitrogen hose (L.P.) (2)
7787
       Nitrogen hose (H.P.)
       Nitrogen hose (H.P.)
3382
4070
       Patent plate
687
       Drive pin (2)
55620
       Valve handle
                     Valve handle machined
         2186
                     12283 handle casting
3112
       Valve extension rod bushing
3113
       1/2" conduit lock nut
       1/2" D. Rod (62" lg)
2537
       Ring Pin
598
2367
       Safety Chain
       #4 - 40 x 3/4" Lg. Hex Head Screw
15609
       Lead and Wire Seal
197
14798
       Regulator (2)
                     Stud (2)
         25590
36239
       Cylinder Roller (3)
                     Ball Transfer (2)
         19940
         25540
                     Pop Rivet (4)
         2396
                     3" \times 3/8" Flat Steel (9-1/4" Lg)
         36228
                     Paint Specifications
```

```
36045
       Cylinder End Plate
                     8" x 1/4" Flat Steel (10-1/8" Lg)
          16166
         36228
                     Paint Specifications
36044
       Cylinder End Plate
                     8" x 1/4" Flat Steel (11-21/32" Lg)
          16166
         36228
                     Paint Specifications
       1/2" Lockwasher (S.S.) (8)
16121
       1/2" - 13 Hex Nut (S.S.) (10)
16119
       3/8" - 16 \times 1-1/2" Lg Cap Screw (S.S.) (12)
16512
14928
       3/8" Hex Nut (S.S.) (16)
       3/8" Lockwasher (S.S.) (16)
14929
       3/8" Flat Washer (S.S) (36)
16618
       3/16" x 5/16" Lg Pop Rivet (S.S.) (8)
26520
       1/2" x 3/8" Reducing Bushing (2)
17281
       1/2" x 45' Elbow (2)
30245
25582
       Swivel Adaptor Union (2)
       1/2"-13 x 1-1/2" Lg Hex Head Bolt (S.S.) (8)
16117
       1/2" Flat Washer (S.S.) (8)
17486
       1/4"-20 x 1-1/2" U Bolt (S.S.) (7)
16514
       1/4" Lockwasher (S.S.) (6)
1133
       1/4"-20 Hex Nut (S.S.) (6)
18107
       3/4" Pipe (49" Lg)
19853
       1" Pipe (26" Lg)
19875
19958
       1/2" Pipe (27-3/4" Lg)
36042
       Nameplate
34709
       Nameplate
34708
       Nameplate
36227
       Nameplate
36226
       Nameplate
19958 1/2" Pipe (58" Lg)
       Cylinder Roller (3)
36038
                     Ball Transfer (2)
         19940
         25540
                     Pop Rivet (4)
         2396
                     3" x 3/8" Flat Steel (10" Lg)
         36228
                     Paint Specifications
36235
       Nameplate - Identification
36236
       Nameplate - Transportation
       Nameplate - Warranty
36036
26147
       Recharge Carton
26072
       Charging Valve (2)
       1/4" x 2" Lg Nipple (2)
16122
       Machined Tee (2)
36041
         36228
                     Paint Specifications
       3/8" x 1-1/4 Bolt (8)
19124
55502
       Actuation Line Assembly
         32739
                     Remote Actuator
                     For balance of details see actuating
                     device shipping assembly, 32739
                     1/4" O.D. PVC Covered Copper Tube
         19112
         55472
                     Valve Actuator
         36228
                     Paint Specifications
         16477
                     1/4 Tube x 1/4 NPT Male Connector (6)
```

```
19173
                     1/4 Tee (2)
         11580
                     Hose (2)
         11160
                     Quick Opening Valve Actuator (2)
                     Refer to accessories index Page 56 for
                       details
         16645
                     1/4 x 90 Street Elbow
                     Safety Relief Valve
         13797
         55686
                    Oil Hole Cover
         19407
                    Elbow
                    Male Elbow
         11718
         19111
                    Bushing
         1732
                     1/8 NPT Poppet Valve
         19968
                     1/4 Elbow Brass (2)
                    1/4 Brass Pipe 15" Lg
         16138
                    1/4 Brass Pipe 8" Lg
         16138
         19172
                     1/4 x 1-1/2 Lg Brass Nipple
         16138
                     1/4 Brass Pipe 2" Lg
55469
       Twin Agent Nozzle
         55875
                    D.C. Nozzle Sub-Assembly
                    55874
                            Nozzle Body, Coated
                            53084
                                   Nozzle Body, Machined
                            55819 Hard Lube Coating Specifications
                    55873
                            Trigger Assembly
                            55872
                                  Trigger Coated
                                          Trigger Machined
                                   53455
                                          54010 Trigger Casting
                                   55819 Hard Lube Coatings Specs.
                            53848 Pins (2)
                    For balance of details refer to over/under
                    twin agent nozzle assembly (commercial) 54735
         53091
                    Insert
         13903
                    O-Ring
                    Gasket (3)
         8105
         55706
                    Nozzle Body, Coated
                    55503
                            Nozzle Body
                            31844 Aluminum Rod
                    55819
                            Hard Lube Coating Specifications
         55878
                    Bent Pipe, Coated
                            Bent Pipe
                    54281
                            53086 1" Sch. 40 Aluminum Pipe
                           Hard Lube Coating Specifications
         24713
                    Coupling (S.S.)
         54864
                    Set Screw (2)
         55718
                    Halon Nozzle Sub-Assembly
                    55717
                            Compression Spring
                    55858
                            Nozzle Body, Coated
                           53088
                                   Nozzle Body, Machined
                                   53010 Nozzle Body, Casting
                            55819
                                   Hard Lube Coating Specifications
                    53909
                            Shaft - Chrome Plate
                           53085
                                   Shaft
                                   Chrome Plate Specifications
                           9515
```

```
55873
                            Trigger Assembly
                            55872
                                   Trigger Coated
                                          Trigger Mounted
                                   53455
                                           54010 Trigger Casting
                                   55819 Hard Lube Coating Specs.
                                  Pin (2)
                            53848
                            For balance of details, refer to
                            Mobil Oil twin agent nozzle assembly,
                            53082 D.C. nozzle P/N 53083
                     Halon Nozzle Body - Coated
         55848
                            Nozzle Body - Machined
                     55621
                            31844 Aluminum Rod
                     55819
                            Hard Lube Coating Specifications
         55856
                     Barrel, Coated
                     55596
                           Barrel
                           Hard Lube Coating Specifications
                     55819
         3902
                     Adaptor
         26144
                     Free Swivel Adaptor
         55587
                     Adaptor Coated
                     55622
                           Adaptor
                            Hard Lube Coating Specifications
                     55819
         42397
                     0-Ring #126
55545
       Bracket
18105
       1/4 x 1/2 Lg Hex Socket Cap Screw (2)
55544
       Adaptor
55543
       Bracket
55542
       Adaptor
       3/8 x 1/2 Hex Cap Screw (2)
22438
       #10 x 3/8 Lg Socket Hd Cap Screw (4)
55594
15990
       Gromme t
55687
       Conduit Clip (9)
18105
       1/4 \times 1/2 Lg Hex Hd Bolt (11)
11334
       1/4 Stop Nut (11)
       Switch Box Assembly
55688
                     Switch Box - Machined
         55689
                     54481 Switch Box
         27024
                     Terminal Board
         30824
                    Pop Rivet (2)
         17873
                     Solderless Terminal (4)
       Sealtite Connector (5)
55690
       Grounding Ferrule
55691
19926
       Grommet
       Sealer
55692
19922
       1/2" Sealtite Conduit (22 ft. approximately)
19921
       #4 Gage Electric Wire (25 ft. approximately)
19920
       #16 Gage Electric Wire (25 ft. approximately)
19929
       Terminal (5)
17873
       Terminal (7)
19931
       Terminal
55623
       Rollpin
51656
       Nozzle Support
36228
       Paint Specifications
```